

SAFE CONTROL OF COCOA MIRIDS IN WEST AFRICA

Mycoinsecticide Evaluation: Application, Behaviour & Efficacy

Nick Jessop

Mycoinsecticide Evaluation

Application

- Understanding Dose-transfer
- Lab to Field Conversion

Behaviour

- Response to Treatments
- Chemical Standard Additive

Efficacy

- Bioassay Design
- Pot Trials
- Field Trials

Delivery Systems are IMPORTANT!

Being able to measure the fate of a pesticide when applied provides:

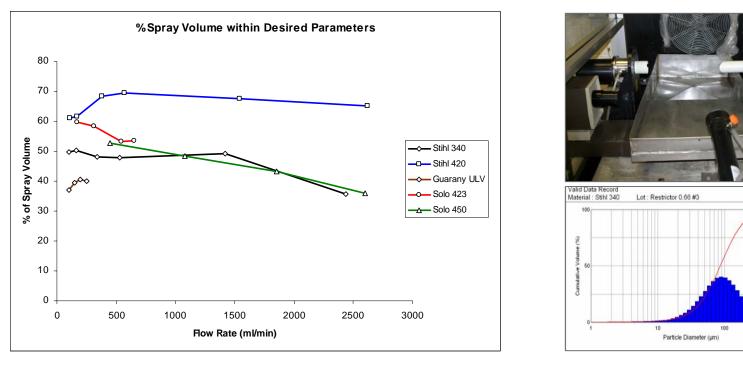
- Understanding of the Spray Efficiency
- Likely effectiveness of the Application
- Transferable for Chemical and Biopesticide Application

Experimental Factors:

- Flow Rate
- Spray Technique
 Every/Alternate Rows

IPARC

20.00


0.00

5.00

0.00

Application Field Trials

Equipment Selection

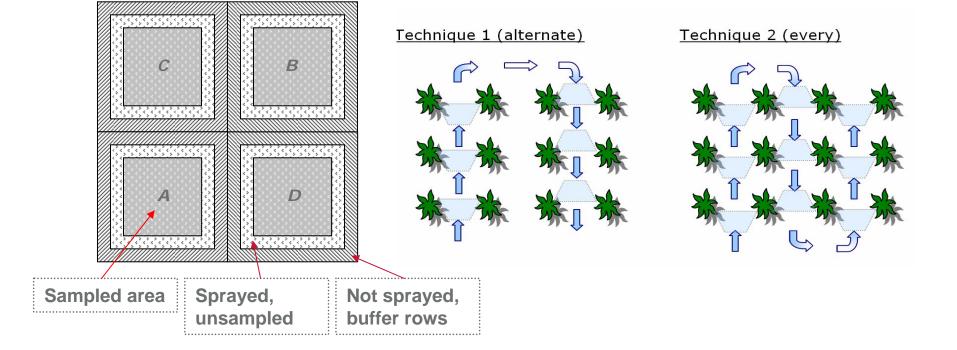
Data from:

Optimising the use of knapsack mistblowers for control of insect pests of cocoa – *Nick Jessop* and *Roy Bateman - July/August 2007 International Pest Control*

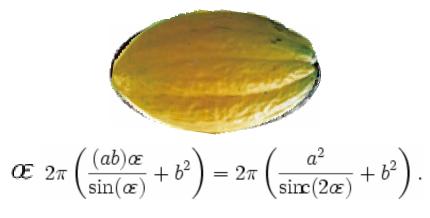
& Motorised knapsack sprayers: their rationale and performance in developing countries – *Roy Bateman* and *Nick Jessop – January 2008 AAB* International Advances in Pesticide Application

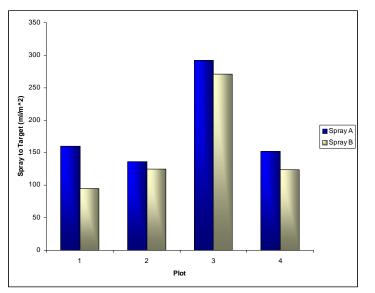
Fluorescent Tracer Work

- UV Tracer acts as substitute for the Active Ingredient (AI) of the pesticide
- Fluorescein Sodium Salt
- Cheap and Quick Analysis
- Assess UV Degradation
- Calibrate Serial Dilutions
- Spray at 250 ppm Concentration



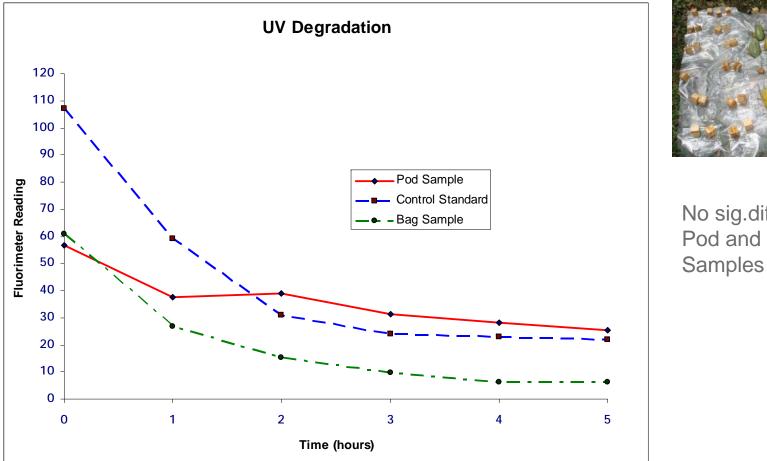
Trial Design


Block	Restrict	or <u>Technique</u>	Flow rate (I/m)	VAR(approx)
А	1.0	alt	0.57	20 l/ha
В	1.6	alt	1.54	50 l/ha
С	1.0	every	0.57 x 2	40 l/ha
D	1.6	every	1.54 x 2	100 l/ha



Measured Parameters

- Aim: Determine Spray to Target (Pods) ml/m²
 - Fluorimeter Reading
 - ➢ Approx Surface Area of Pod using −
 - Pod Length
 - Radius (from Central Circumference)
 - Volume (by displacement)
 - Pod Model (prolate spheroid)

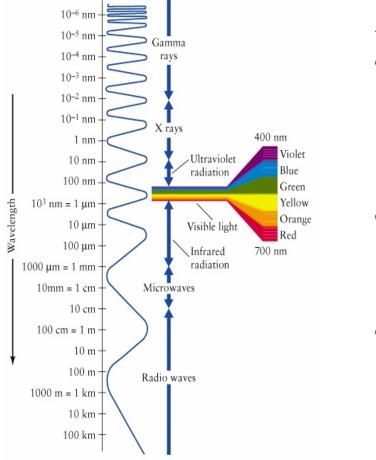

* Predicted Volume using Model differed from Actual Volume by an average of **4%** (n=420)

UV Degradation Calibration

No sig.diff. between Pod and Bag Samples

Dye Application Trial '08 – Bunso Site

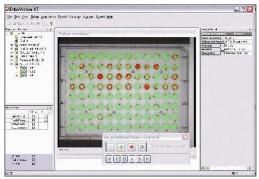
- Repeat basic design of first trial
- Expand to sample from new growth as well as pods
- Repeat



Food Dye Analysis with Spectrophotometer

- **Dyes**nalysis of samples
- EquipAllula Red 507nm
 - Green S 26300 Spectrophotometer supplied to lab at CRIG

Behavioural Evaluation


Is it possible to improve the chances of a mycoinsecticide working?

Behavioural manipulation

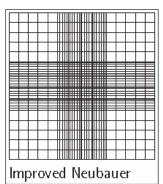
Use of sub-lethal doses of chemical insecticide addition of 20% recommended dose of: Pyrethroid Neonicotinoid

Multi-chamber observation of inoculated insects Behavioural differences compared to infection rates

Arena Observation Sample

Bioassay Assessment

Test Isolate


- Initial Passage through surrogate host (Dysdercus fasciatus)
- Single Spore Maintenance Culture
- Spore Concentration using Counting Slide
- Spore Viability rejected if <90%</p>

Inoculation

- Direct Application using Burkard MicroApplicator
- Secondary Uptake from substrate
- Assessment & Analysis
 - Minimising Control Mortality
 - Define 'death by fungus!'
 - Kaplan-Meier Survival Curves
 - Median Lethal Times/LD₅₀

Pot Trials: CRIG (Nov-Dec)

- Using nursery grown 'caged' plants
- Inoculated with known number of target insects
- Subject to different treatments

Field Trials: Bunso Station (2009)

- Area knock-down (clean sweep approach)
- Treatment
- Reassess using repeat of knock-down and damage survey

Trial Layout

Small plot trials should have a minimum of 5 trees, each treatment replicated 4 times in a randomised complete block design. If the trial is un-replicated plots should be 2,000m². In locations where no commercial treatment is applied to the surrounding area, a buffer zone of 30 m width should be treated with a standard product.

Imperial College London

Where do we need more numbers?

- Between tree distribution of mirids themselves (both Ss & Dt in Ghana cocoa)
- Spray distribution in cocoa canopy
- Within-tree behaviour of mirids and exposure to deposits, so ...
- Can we target a certain part of the tree? Or do we simply (!) ...
- ... assess likelihood and level of deposit pick-up by mirids (different from chemical standards?)
- LD₅₀ / MLT of mycoinsecticide
- Efficacy (and if not, why not)

THANK YOU

